CIS 630 - Fall 2004
Distributed Systems

Lecture 1
Characterization of Distributed Systems

University of Oregon
Department of Computer and Information Science
Course Information

- Still call “Advanced Operating Systems”
 - However, course description is correct
- Now the required core course in graduate curriculum
 - Replaces CIS 629
 - Although catalog still shows CIS 629 as the core
- Instructor
 - Prof. Allen D. Malony
- Course webpage
 - http://www.cs.uoregon.edu/classes/04F/cis630
- Class: Tues./Thurs., 12:00-1:20 pm, 475 McKenzie
Course Text

- Distributed Systems: Concepts and Design
 - G. Coulouris, J. Dollimore, T. Kindberg
 - Addison-Wesley, Third Edition
 - 2001

- Text webpage
 - http://www.cdk3.net/

- Many reference texts listed on the course webpage

- Will follow text closely
Lectures

☑ All lectures will use computer slide presentation
 ❍ All lectures slides will be posted on webpage
 ❍ No later than end of week of lecture

☑ Lecture content
 ❍ Some text / figures come from online book materials
 ❍ Other sources of lecture content will be cited

☑ Please do not waste paper printing the slides
Assignments

- Problem sets (2)
 - Third and seventh week
 - Enforce topics and practice for exam

- Programming exercise
 - Java RMI client-server application
 - Experience programming distributed systems

- Reading discussions

- Term exam

- Term paper

- Term project
Reading Discussions

☐ Five research papers assigned to read
 ☐ Weekly, starting in third week
☐ Turn in two-page summaries
 ☐ Use as basis of discussion
☐ Gain practice reading research papers
☐ Useful for term paper
Term Exam

- There will be one exam in the course
- It will take place the first class meeting of Week 9
- It will cover topics through Week 8
 - Lecture topics
 - Research paper discussions
 - Book chapters
- Two parts
 - Exam in class
 - Take-home problem (due 12:00 pm, Nov. 29)
Term Paper

- One of the main assignments in the course
- Give you an opportunity to explore a topic of interest
 - Might not be covered by lecture or assigned readings
- Give you experience in reading research literature
- Give you experience in assimilating information
- You will present your paper in class
 - During Weeks 9 and 10
- See course webpage for paper requirements
Term Project

- Second main assignment in course
- Enhance your knowledge of distributed systems
 - Hands-on distributed application development
- Done in teams
 - 3-4 people
 - Individual and group effort identified
- Deliverables
 - Written report of accomplishments
 - Demonstration during finals week
 - Project presentations during final exam period
Course Topics

- Distributed system characterization
- Networking
- Distributed programming and processing
- Understanding time and global states
- Coordination and agreement
- Distributed data management and file systems
- Naming
- Concurrency control and distributed transactions
- Replication
- Distributed shared memory
Lecture Objectives

- Distributed system characteristics
 - components coordinating actions with messages
 - Concurrency
 - Independent failure and lack of global clock
- Place distributed systems in context
 - Internet, intranet, mobile computing
- Motivate benefits of resource sharing
 - Web as an example.
- Understanding of challenges for distribute systems
 - heterogeneity, openness, security, scalability
 - failure handling, concurrency, transparency
Characterization of Distributed Systems

☐ A distributed system is defined as one in which components at networked computers communicate and coordinate their actions only by passing messages.

☐ Definition allows for
 - Concurrent execution of programs
 - Prevents possibility of a global clock
 - Means that components can fail independently

☐ Why construct and use distributed systems?
 - Stems from a desire to share resources
 - Coordinate distributed operations
Examples of Distributed Systems

- Internet
 - Very large collection of computer networks
 - Very large distributed system of networked computers
 - Enables users to make use of a vast number of services

- Intranet
 - Portion of Internet separately administered
 - Use firewall to enforce own local security policies
 - Supports standard and specialized services

- Mobile and ubiquitous computing
 - Nomadic computing, location-aware, embedded
Typical Portion of the Internet

* Graphics from Distributed Systems: Concepts and Design, Coulouris, Dollimore, and Kindberg
Typical Intranet

* Graphics from Distributed Systems: Concepts and Design, Coulouris, Dollimore, and Kindberg
Devices in a Distributed System

Internet

Host intranet
- Wireless LAN
- Printer
- Camera
- Laptop
- Mobile phone

WAP gateway

Home intranet

WAP: Wireless Access Protocol

* Graphics from Distributed Systems: Concepts and Design, Coulouris, Dollimore, and Kindberg
Resource Sharing

- Hardware sharing and computing/data sharing
- Variety of patterns and types of resource sharing
- A service manages a collection of related resources and presents their functionality to users / applications
 - Shared resources are managed by *server* processes
 - Accepts service requests from *client* processes running on other computers and responds accordingly
 - Well-defined set of operations
 - Requests are sent in messages
- Scalability of services is a key aspect
Types of Distributed Process Interactions

- Client-server systems
 - Clients request services from servers
- Versus peer-to-peer
 - Processes have equal status
- Resources may be encapsulated as objects
 - Methods are invoked by client objects
- Basis of distributed processing mechanisms
 - Naming
 - Management of state
WWW

- Evolving system for publishing and accessing resources and services across the Internet
- The WWW and the Internet are not the same thing
- The WWW is an open system
 - Extensible in services and service providers
 - Extensible in resource types and content
- Illustrates approach to addressing scale
 - Use of hierarchical naming
 - Partitioned data
 - Caching and replication
Web Servers and Web Browsers

Internet

Web servers

www.google.com

www.cdk3.net

www.w3c.org

File system of www.w3c.org

Protocols

Activity.html

Browsers

http://www.google.com/search?q=kindberg

http://www.cdk3.net/

http://www.w3c.org/Protocols/Activity.html

URLs:
Uniform (Universal) Resource Locator

* Graphics from Distributed Systems: Concepts and Design, Coulouris, Dollimore, and Kindberg
Challenges

- Heterogeneity
- Openness
- Security
- Scalability
- Failure handling
- Concurrency
- Transparency
Transparencies

- Transparency hides the separation of components
- *Access transparency*: enables local and remote resources to be accessed using identical operations
- *Location transparency*: enables resources to be accessed without knowledge of their location
- *Concurrency transparency*: enables several processes to operate concurrently using shared resources without interference between them
- *Replication transparency*: enables multiple instances of resources to be used to increase reliability and performance without knowledge of the replicas by users or application programmers
Transparencies (continued)

- **Failure transparency**: enables the concealment of faults, allowing users and application programs to complete their tasks despite the failure of hardware or software components.

- **Mobility transparency**: allows the movement of resources and clients within a system without affecting the operation of users or programs.

- **Performance transparency**: allows the system to be reconfigured to improve performance as loads vary.

- **Scaling transparency**: allows the system and applications to expand in scale without change to the system structure or the application algorithms.