CIS 631
Parallel Processing

Lecture11: Analytical Modeling of Parallel Algorithms

Allen D. Malony
malony@cs.uoregon.edu

Department of Computer and Information Science
University of Oregon
Acknowledgements

☐ Portions of the lectures slides were adopted from:

Outline

- Performance scalability
- Analytical performance measures
- Amdahl’s law and Gustafson’s law
- Isoefficiency
- Parallel execution models
Causes of Performance Loss

- If each processor is rated at \(k \) MFLOPS and there are \(p \) processors, shouldn’t we see \(k*p \) MFLOPS performance?
- If it takes 100 seconds on 1 processor, shouldn’t it take 10 seconds on 10 processors?
- Several causes affect performance
 - Each must be understood separately
 - But they interact with each other in complex ways
 - Solution to one problem may create another
 - One problem may mask another
- Scaling (system or problem size) can change conditions
- Need to understand *performance space*
Performance Issues

- Algorithmic overhead
- Speculative Loss
- Sequential Performance
- Critical Paths
- Bottlenecks
- Communication Performance
 - Overhead and grainsize
 - Too many messages
 - Global Synchronization
- Load imbalance
Why Aren’t Applications Scalable?

- Algorithmic overhead
 - Some things just take more effort to do in parallel
- Speculative loss
 - Do A and B in parallel, but B is ultimately not needed
- Critical Paths
 - Dependencies between computations spread across processors
- Bottlenecks
 - One processor holds things up
- Communication overhead
 - Spending increasing proportion of time on communication
- Load Imbalance
 - Makes all processor wait for the “slowest” one
 - Dynamic behavior
Algorithmic Overhead

- Sometimes, we have to use an algorithm with higher operation count in order to parallelize an algorithm
 - Either the best sequential algorithm doesn’t parallelize at all
 - Or, it doesn’t parallelize well (e.g. not scalable)

- What to do?
 - Choose algorithmic variants that minimize overhead
 - Sometimes parallelizing best sequential algorithm may not be best
 - Must compare with best sequential algorithm
 - Use two level algorithms

- Examples:
 - Parallel Prefix (Scan)
 - Game Tree Search
 - Sorting
Critical Paths

- Long chain of dependence
 - Main limitation on performance
 - Resistance to performance improvement

- Diagnostic
 - Performance stagnates to a (relatively) fixed value
 - Critical path analysis

- Solution
 - Eliminate long chains if possible
 - Shorten chains by removing work from critical path
Bottlenecks

- How to detect?
 - One processor A is busy while others wait
 - Data dependency on the result produced by A

- Typical situations:
 - Many-to-one reduction / computation / one-to-many broadcast
 - One processor assigning job in response to requests

- Solution techniques:
 - More efficient communication
 - Hierarchical schemes for master slave

- Program may not show ill effects for a long time
- Shows up when scaling
Embarrassingly Parallel Computations

- An embarrassingly parallel computation is one that can be obviously divided into completely independent parts that can be executed simultaneously
 - In a truly embarrassingly parallel computation there is no interaction between separate processes
 - In a nearly embarrassingly parallel computation results must be distributed, collected and/or combined in some way
- Embarrassingly parallel computations have potential to achieve maximal speedup on parallel platforms
Embarrassingly Parallel Computations

- No or very little communication between processes
- Each process can do its tasks without any interaction with other processes

![Diagram showing processes and input data with arrows pointing towards results](Image)
Embarrassingly Parallel Computation Examples

- Numerical Integration
- Mandelbrot Set
- Monte Carlo Methods
- Distributed Computing
The Mandelbrot set is a set of points in a complex plane that are "quasi-stable" (will increase and decrease but not exceed some limit) when computed by iterating a function:

\[z_{k+1} = z_k^2 + c \]

- \(z_k \) is the \(k \)th iteration of the complex number \(z = a + bi \)
- \(z_{k+1} \) is the \((k+1)\)th value of \(z \)
- \(c \) is a complex number giving the position of the point in the complex plane
- If a point has coordinates \((x,y)\), then \(c = x + yi \)
Mandelbrot Set

- Computation of a single pixel:
 \[z_{k+1} = z_k^2 + c \]
 \[z_{k+1} = (a_k + b_k i)^2 + (x + yi) \]
 \[= (a_k^2 - b_k^2 + x) + (2a_k b_k + y)i \]

- Initial value of z is 0

- Iterations are continued until the magnitude of z is greater than 2 (which indicates that eventually z will become infinite) or the number of iterations reaches a threshold

- The magnitude of z is given by
 \[|z| = |a + bi| = \sqrt{a^2 + b^2} \]
Mandelbrot Visualization

- Black points do not go to infinity
- Colors are added to the points that are not in the set
Parallelizing Mandelbrot Computation

- Mandelbrot set is embarrassingly parallel – computation of any two pixels is completely independent.
- The numbers of iterations (execution times) for the computation on different pixels are different.
- Parallelization strategies:
 - Block partitioning
 - mapping greatly affects performance
 - Dynamic assignment
Monte Carlo Methods

- Monte Carlo methods
 - Based on the use of random selections in calculations leading to the solution of numerical and physical problems
 - Similarity of statistical simulation to games of chance
- Also referred to as Monte Carlo simulation
- Not all simulations involving the use of random number are Monte Carlo simulation
 - Only those in which the passage of time plays no substantial role are
Calculating \(\pi \): Monte Carlo

- Consider a circle of unit radius
- Place circle inside a square box with length of side 2

\[\frac{1}{2} \times \frac{1}{2} = \frac{\pi}{4} \]

- The ratio of the circle area of the area of the square is:
Monte Carlo Calculation of \(\pi \)

- Randomly choose a number of points in the square.
- For each point \(p \), determine if \(p \) is inside the circle.
- The ratio of points in the circle to points in the square will give an approximation of \(\pi/4 \).
Parallel Monte Carlo Methods

- Calculation on different points are independent
- It is embarrassingly parallel
- Need to generate independent random number sequences
Euler’s Conjecture

- It is impossible to exhibit three fourth powers whose sum is a fourth power, four fifth powers whose sum is a fifth power, and similarly for higher powers, Euler, 1769
 \[x^n = \prod_{i=1}^{n-1} y_i^n \quad (n \geq 4) \]

- Is in fact a generalized Fermat’s Last Theorem
 - Proved by Wiles in 1994

- The first counterexample was found by Lander and Parkin in 1966
 - \[144^5 = 133^5 + 110^5 + 84^5 + 27^5 \]

- A counterexample for the fourth power was found by Elkies, 1988
 - \[422481^4 = 414560^4 + 217519^4 + 95800^4 \]

- No counterexample known for n>5
EulerNet

- http://euler.free.fr/
- The main goal is to find a sixth power that is equal to the sum of five sixth powers
- Each participant downloads a small program that will run in the background when the CPU is idle
- The program acquires a range of numbers that need to be checked from the EulerNet server
- Solutions will be reported to the server once the Internet connection is available

Distributed Computing
- The computational problem to be solved must be embarrassingly parallel
Performance Metrics

- T_1 is the execution time on a single processor system
- T_p is the execution time on a p processor system
- $S(p)$ (S_p) is the speedup
 \[
 S(p) = \frac{T_1}{T_p}
 \]
- $E(p)$ (E_p) is the efficiency
 \[
 Efficiency = \frac{S_p}{p}
 \]
- $Cost(p)$ (C_p) is the cost
 \[
 Cost = p \cdot T_p
 \]
Performance Metrics

- Parallel algorithm is *cost-optimal*
 - parallel cost = sequential time
 - \(C_p = T_1 \)
 - \(E_p = 100\% \)

- Critical when down-scaling
 - Parallel algorithm may become slower than sequential
Amdahl’s Law (Fixed Problem Size Speedup)

- Let f be the fraction of a program that is sequential
 - $1-f$ is the fraction that can be parallelized
- Let T_1 be the execution time on 1 processor
- Let T_p be the execution time on p processors
- S_p is the speedup
 $$S_p = \frac{T_1}{T_p} = \frac{T_1}{f \cdot T_1 + (1-f) \cdot T_1/p} = \frac{1}{f + (1-f)/p}$$
- As $p \to \infty$
 $$S_p = \frac{1}{f}$$
Performance and Scalability

☐ Evaluation

☐ Sequential runtime is a function of
 ➢ problem size
 ➢ architecture

☐ Parallel runtime is a function of
 ➢ problem size
 ➢ parallel architecture
 ➢ number of processors

☐ Parallel performance affected by algorithm + architecture

☐ Scalability

☐ Ability of parallel algorithm to achieve performance gains proportional with respect to the number of processors
Gustafson’s Law (Scaled Speedup)

- Often interested in running larger problems when scaling
- Problem size is determined by constraint on parallel time
- Assume parallel time is kept constant (let it be 1)
 \[T_p = C = (f + (1-f)) \times C \]
- What is the sequential execution time?
 - Let \(C=1 \)
 \[T_s = f + p(1-f) \]
- What is the speedup in this case?
 \[S_p = \frac{T_s}{T_p} = f + p(1-f) \]
- Scale the problem size as increase number of processors
Scalability

- A program can scale up to use many processors
 - What does that mean?
- How do you evaluate scalability?
- How do you evaluate scalability goodness?
- Comparative evaluation
 - If double the number of processors, what to expect?
 - Is scalability linear?
- Use parallel efficiency measure
 - Is parallel efficiency retained as problem size increases?
- Apply performance metrics
P and NP

- **P**: solved in polynomial time $n^{O(1)}$
- **NP**: verified in polynomial time $n^{O(1)}$
- Every known *NP* problem can be solved in exponential time $n^{O(n)}$
- A problem is *NP*-complete if:
 - It is an *NP* problem, and
 - Every problem in *NP* can be polynomially reduced into this problem
Parallel Feasibility

- A problem is **feasible** if it can be solved by a parallel algorithm with worst case time complexity $n^{O(1)}$ and processor complexity $n^{O(1)}$.

- A problem is **highly parallel** if it can be solved by a parallel algorithm worst case time complexity $(\log n)^{O(1)}$ and processor complexity $n^{O(1)}$.

- A parallel algorithm is **inherently sequential** if it is feasible, but has no feasible highly parallel algorithm for its solution.

- The class of feasible parallel problems is equivalent to the class of P.

Lecture 11
30
CIS 631 - Parallel Processing
NC and P-Complete

- NC (Nick’s Class) is the class of highly parallel problems.
- There is a general belief, but not a proof, that $P \neq NC$.
- A problem L is said to be P-complete if:
 - $L \in P$, and
 - Every other problem in P can be transformed to L in polylogarithmic $(\log n)^{O(1)}$ parallel time using $n^{O(1)}$ processors.
- Such a transformation is said to be an NC-reduction.
- A P-complete problem is inherently sequential.
- If we could find (unlikely) an $L \in P$-Complete and $L \in NC$, the it would follow that $P = NC$.
Polynomial sequential space is related to polylogarithmic parallel time. In other words, what can be computed in $n^{O(1)}$ sequential space can be computed in $(\log n)^{O(1)}$ parallel time, and vice versa. If a problem p_1 can be transformed to the problem p_2 using polynomial space, then the transformation is also possible using an NC reduction.
An NC Problem

- Sum
 - Given: natural numbers \(a_1,a_2,\ldots,a_n\)
 - Problem: what is \(a_1+a_2+\ldots+a_n\)?

- Sequential time complexity
 - \(O(n)\)

- Parallel time complexity
 - \(n\) processors: \(O(\log n)\)
 - \(S_p = O(n/\log n)\)
 - \(E_p = O(1/\log n)\)
 - Cost optimal
Another NC Problem

- Matrix multiplication
 - Given: two $n \times n$ matrices A and B
 - Problem: what is AxB?

- Sequential time complexity
 - $O(n^3)$

- Parallel time complexity
 - n processors: $O(n^2)$
 - n^2 processors: $O(n)$
 - n^3 processors: $O(\log n)$
Question

☐ For a problem with sequential time complexity

\[T(n) = n^O(1) \]

☐ If the problem can be solved cost-optimally using \(n \) processors, is it highly parallel?

☐ If the problem can be solved cost-optimally using \(T(n) \) processors, is it highly parallel?
A problem in P is highly parallel (NC) if it runs in polylogarithmic time \((\log n)^{O(1)}\) on polynomial \(n^{O(1)}\) processors; otherwise, it is inherently sequential.

A P problem is P-complete if every problem in P can be transformed into this problem using an NC-reduction.

A P-complete problem is very unlikely to be highly parallel.
Major analytical/theoretical techniques

- Typically involves simple algebraic formulas, and ratios
 - Typical variables are:
 - data size (N), number of processors (P), machine constants
 - Model performance of individual operations, components, algorithms in terms of the above
 - Be careful to characterize variations across processors, and model them with (typically) max operators
 - Constants are important in practical parallel computing
 - Be wary of asymptotic analysis: use it, but carefully

- Scalability analysis:
 - Isoefficiency
Isoefficiency

- Quantify scalability
- How much increase in problem size is needed to retain the same efficiency on a larger machine?
- Efficiency
 - \[T_1 / (p \times T_p) \]
 - \[T_p = \text{computation} + \text{communication} + \text{idle} \]
- Isoefficiency
 - Equation for equal-efficiency curves
 - If no solution: the problem is not scalable
 - in the sense defined by isoeficiency
Scalability of Adding n Numbers

- Scalability of a parallel system is a measure of its capacity to increase speedup with more processors.
- Adding n numbers on p processors with strip partition:

\[
T_{par} = \frac{n}{p} \left[1 + 2 \log p \right]
\]

\[
\text{Speedup} = \frac{n \left[1 \right]}{\frac{n}{p} \left[1 + 2 \log p \right]}
\]

\[
\text{Efficiency} = \frac{S}{p} = \frac{n}{\frac{n}{p} + 2 \log p}
\]

\[
\frac{n}{p + 2 p \log p}
\]

Graph showing efficiency for different values of n and p. Efficiency decreases as the number of processors increases.
Problem Size

- Infomally, problem size is expressed as a parameter of the input size
 - How do we define the problem size for an nxn matrix?
- A consistent definition of the size of the problem is the total number of basic operations required to solve the problem, or T_{seq}
- Also refer to problem size as “work”, denoted it by W:
 \[W = T_{seq} \]
The overhead function of a parallel system is defined as the part of the cost that is not incurred by the best serial algorithm.

Denoted by T_O, it is a function of W and p

$$T_O(W,p) = pT_{par} - W$$

Overhead function of adding n numbers on p processor

$$T_O(W,p) = p(n/p-1+2\log(p))-n+1 \quad \square \quad 2p\log(p)$$

 Isoefficiency Function

- With a fixed efficiency, W can be expressed as a function of p

$$ T_{\text{par}} = \frac{W + T_o(W, p)}{p} $$

$$ \text{Speedup} = \frac{W}{T_{\text{par}}} = \frac{Wp}{W + T_o(W, p)} $$

$$ \text{Efficiency} = \frac{S}{p} = \frac{W}{W + T_o(W, p)} = \frac{1}{1 + \frac{T_o(W, p)}{W}} $$

$$ E = \frac{1}{1 + \frac{T_o(W, p)}{W}} = \frac{T_o(W, p)}{W} = \frac{1}{E} $$

$$ W = \frac{E}{1 + E} T_o(W, p) = KT_o(W, p) \quad \text{Isoefficiency Function} $$
Isoefficiency Function of Adding n Numbers

- Overhead function:
 - $T_0 = 2p \log(p)$
- Isoefficiency function:
 - $W = 2Kp \log(p)$
- If p doubles, W needs also to be doubled to roughly maintain the same efficiency
More Complex Isoefficiency Functions

- A typical overhead function T_O can have several distinct terms of different orders of magnitude with respect to both p and W.
- We can balance W against each term of T_O and compute the respective isoefficiency functions for individual terms, then keep only the term that requires the highest grow rate with respect to p as the asymptotic isoefficiency function.
Isoefficiency

- Consider a parallel system with an isoefficiency function
 \[T_o = p^{3/2} + p^{3/4}W^{3/4} \]

- Using only the first term
 \[W = Kp^{3/2} \]

- Using only the second term
 \[W = Kp^{3/4}W^{3/4} \]
 \[W^{1/4} = Kp^{3/4} \]
 \[W = K^4 p^3 \]

- \(K^4p^3 \) gives the overall asymptotic isoefficiency function of this system
Parallel Computation Models

- PRAM (parallel RAM)
- BSP
- LogP
PRAM

- Parallel Random Access Machine (PRAM)
- Shared-memory multiprocessor model
- Unlimited number of processors
 - Unlimited local memory
 - Each processor knows its ID
- Unlimited shared memory
- Inputs/outputs are placed in shared memory
- Memory cells can store an arbitrarily large integer
- Each instruction takes unit time
- Instructions are synchronized across processors (SIMD)
PRAM Complexity Measures

- For each individual processor
 - \(Time \): number of instructions executed
 - \(Space \): number of memory cells accessed

- PRAM machine
 - \(Time \): time taken by the longest running processor
 - \(Hardware \): maximum number of active processors

- Technical issues
 - How processors are activated
 - How shared memory is accessed
Processor Activation

- P_0 places the number of processors (p) in the designated shared-memory cell
 - Each active P_i, where $i < p$, starts executing
 - $O(1)$ time to activate
 - All processors halt when P_0 halts

- Active processors explicitly activate additional processors via FORK instructions
 - Tree-like activation
 - $O(\log p)$ time to activate
PRAM is a Theoretical (Unfeasible) Model

- Interconnection network between processors and memory would require a very large amount of area
- The message-routing on the interconnection network would require time proportional to network size
- Algorithm’s designers can forget the communication problems and focus their attention on the parallel computation only
- There exist algorithms simulating any PRAM algorithm on bounded degree networks
- Design general algorithms for the PRAM model and simulate them on a feasible network
Classification of PRAM Models

- **EREW** (Exclusive Read Exclusive Write)
 - No concurrent read/writes to the same memory location

- **CREW** (Concurrent Read Exclusive Write)
 - Multiple processors may read from the same global memory location in the same instruction step

- **ERCW** (Exclusive Read Concurrent Write)
 - Concurrent writes allowed

- **CRCW** (Concurrent Read Concurrent Write)
 - Concurrent reads and writes allowed

- **CRCW > (ERCW, CREW) > EREW**
CRCW PRAM Models

- **COMMON**: all processors concurrently writing into the same address must be writing the same value.

- **ARBITRARY**: if multiple processors concurrently write to the address, one of the competing processors is randomly chosen and its value is written into the register.

- **PRIORITY**: if multiple processors concurrently write to the address, the processor with the highest priority succeeds in writing its value to the memory location.

- **COMBINING**: the value stored is some combination of the values written, e.g., sum, min, or max.

- **COMMON-CRCW** model most often used.
Complexity of PRAM Algorithms

<table>
<thead>
<tr>
<th>Problem</th>
<th>EREW</th>
<th>CRCW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>List Ranking</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Prefix</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Tree Ranking</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Finding Minimum</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
BSP Overview

- Bulk Synchronous Parallelism
- A parallel programming model
- Invented by Leslie Valiant at Harvard
- Enables performance predication
- SPMD style
- Supports both direct memory access and message passing
- BSPlib is a BSP library implemented at Oxford
Components of BSP Computer

- A set of processor-memory pairs
- A communication point-to-point network
- A mechanism for efficient barrier synchronization of all processors
Supersteps

- A BSP computation consists of a sequence of supersteps.
- In each superstep, processes execute computations using locally available data, and issue communication requests.
- Processes synchronized at the end of the superstep, at which all communications issued have been completed.
BSP Parameters

- $p =$ number of processors
- $l =$ barrier latency, cost of achieving barrier synchronization
- $g =$ communication cost per word
- $s =$ processor speed
- l, g, and s are measured in FLOPS
- Any processor sends and receives at most h messages in a single superstep (called h-relation communication)
- Time for a superstep = max number of local operations performed by any one processor + $g*h + l$
The LogP Model

- **Processing**
 - Powerful microprocessor, large DRAM, cache => P

- **Communication**
 - Significant latency (100's of cycles) => L
 - Limited bandwidth (1 – 5% of memory) => g
 - Significant overhead (10's – 100's of cycles) => o
 - on both ends
 - no consensus on topology
 - should not exploit structure
 - Limited capacity

- No consensus on programming model
 - Should not enforce one
LogP

- Latency in sending a (small) message between modules
- Overhead felt by the processor on sending or receiving message
- Gap between successive sends or receives (1/BW)
- Processors
LogP "Philosophy"

- Think about:
 - Mapping of N words onto P processors
 - Computation within a processor, its cost, and balance
 - Communication between processors, its cost, and balance
- Characterize the processor and network performance
- Do not think about what happens within the network
- This should be enough
Typical Values for g and l

<table>
<thead>
<tr>
<th>System</th>
<th>p</th>
<th>g</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiprocessor Sun</td>
<td>2-4</td>
<td>3</td>
<td>50-100</td>
</tr>
<tr>
<td>SGI Origin 2000</td>
<td>2-8</td>
<td>10-15</td>
<td>1000-4000</td>
</tr>
<tr>
<td>IBM-SP2</td>
<td>2-8</td>
<td>10</td>
<td>2000-5000</td>
</tr>
<tr>
<td>NOW (Network of Workstations)</td>
<td>2-8</td>
<td>40</td>
<td>5000-20000</td>
</tr>
</tbody>
</table>
Next Class

- Parallel performance analysis
- Parallel performance tools