CIS 631
Parallel Processing

Lecture 10: Parallel Algorithms

Allen D. Malony
malony@cs.uoregon.edu

Department of Computer and Information Science
University of Oregon
Acknowledgements

☐ Portions of the lectures slides were adopted from:

☐ A. Grama, A. Gupta, G. Karypis, and V. Kumar,
Outline

- Dense matrix algorithms
- Sorting algorithms
- Graph algorithms
Dense Matrix Algorithms

- Great deal of activity in algorithms and software for solving linear algebra problems
 - Solution of linear systems (\(Ax = b \))
 - Least-squares solution of over- or under-determined systems (\(\min ||Ax-b|| \))
 - Computation of eigenvalues and eigenvectors (\(Ax=\lambda x \))
 - Driven by numerical problem solving in scientific computation

- Solutions involves various forms of matrix computations
- Focus on high-performance matrix algorithms
 - Key insight is to maximize computation to communication
Solving a System of Linear Equations

- $Ax = B$

 \[a_{0,0}x_0 + a_{0,1}x_1 + \ldots + a_{0,n-1}x_{n-1} = b_0 \]

 \[a_{1,0}x_0 + a_{1,1}x_1 + \ldots + a_{1,n-1}x_{n-1} = b_1 \]

 \[\ldots \]

 \[A_{n-1,0}x_0 + a_{n-1,1}x_1 + \ldots + a_{n-1,n-1}x_{n-1} = b_{n-1} \]

- Gaussian elimination
 - Forward elimination to $Ux = y$ (U is upper triangular)
 - Without or with partial pivoting
 - Back substitution to solve for x
 - Parallel algorithms based on A partitioning
Sequential Gaussian Elimination

1. procedure GAUSSIAN ELIMINATION (A, b, y)
2. Begin
3. for k := 0 to n - 1 do /* Outer loop */
4. begin
5. for j := k + 1 to n - 1 do
7. y[k] := b[k]/A[k, k];
8. A[k, k] := 1;
9. for i := k + 1 to n - 1 do
10. begin
11. for j := k + 1 to n - 1 do
13. b[i] := b[i] - A[i, k] x y[k];
15. endfor; /*Line9*/
16. endfor; /*Line3*/
17. end GAUSSIAN ELIMINATION
Computation Step in Gaussian Elimination

Rowwise Partitioning on Eight Processes

<table>
<thead>
<tr>
<th>P0</th>
<th>1 (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0 1 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)</td>
</tr>
<tr>
<td>P2</td>
<td>0 0 1 (2,3) (2,4) (2,5) (2,6) (2,7)</td>
</tr>
<tr>
<td>P3</td>
<td>0 0 0 (3,3) (3,4) (3,5) (3,6) (3,7)</td>
</tr>
<tr>
<td>P4</td>
<td>0 0 0 (4,3) (4,4) (4,5) (4,6) (4,7)</td>
</tr>
<tr>
<td>P5</td>
<td>0 0 0 (5,3) (5,4) (5,5) (5,6) (5,7)</td>
</tr>
<tr>
<td>P6</td>
<td>0 0 0 (6,3) (6,4) (6,5) (6,6) (6,7)</td>
</tr>
<tr>
<td>P7</td>
<td>0 0 0 (7,3) (7,4) (7,5) (7,6) (7,7)</td>
</tr>
</tbody>
</table>

(a) Computation:
(ii) A[k,k] := 1

(b) Communication:
One-to-all broadcast of row A[k,*]
Rowwise Partitioning on Eight Processes

(c) Computation:

for $k < i < n$ and $k < j < n$

(ii) $A[i,k] := 0$ for $k < i < n$
2D Mesh Partitioning on 64 Processes

(a) Rowwise broadcast of $A[i,k]$ for $(k - 1) < i < n$

(b) $A[k,j] := A[k,j] / A[k,k]$ for $k < j < n$

(c) Columnwise broadcast of $A[k,j]$ for $k < j < n$

<table>
<thead>
<tr>
<th></th>
<th>(0,1)</th>
<th>(0,2)</th>
<th>(0,3)</th>
<th>(0,4)</th>
<th>(0,5)</th>
<th>(0,6)</th>
<th>(0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
<td>(1,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,6)</td>
<td>(2,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(3,3)</td>
<td>(3,4)</td>
<td>(3,5)</td>
<td>(3,6)</td>
<td>(3,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(4,3)</td>
<td>(4,4)</td>
<td>(4,5)</td>
<td>(4,6)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(5,3)</td>
<td>(5,4)</td>
<td>(5,5)</td>
<td>(5,6)</td>
<td>(5,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(6,3)</td>
<td>(6,4)</td>
<td>(6,5)</td>
<td>(6,6)</td>
<td>(6,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(7,3)</td>
<td>(7,4)</td>
<td>(7,5)</td>
<td>(7,6)</td>
<td>(7,7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(0,1)</th>
<th>(0,2)</th>
<th>(0,3)</th>
<th>(0,4)</th>
<th>(0,5)</th>
<th>(0,6)</th>
<th>(0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
<td>(1,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,6)</td>
<td>(2,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(3,3)</td>
<td>(3,4)</td>
<td>(3,5)</td>
<td>(3,6)</td>
<td>(3,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(4,3)</td>
<td>(4,4)</td>
<td>(4,5)</td>
<td>(4,6)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(5,3)</td>
<td>(5,4)</td>
<td>(5,5)</td>
<td>(5,6)</td>
<td>(5,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(6,3)</td>
<td>(6,4)</td>
<td>(6,5)</td>
<td>(6,6)</td>
<td>(6,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(7,3)</td>
<td>(7,4)</td>
<td>(7,5)</td>
<td>(7,6)</td>
<td>(7,7)</td>
</tr>
</tbody>
</table>
Back Substitution to Find Solution

1. procedure BACK SUBSTITUTION (U, x, y)
2. begin
3. for k := n - 1 downto 0 do /* Main loop */
4. begin
5. x[k] := y[k];
6. for i := k - 1 downto 0 do
7. y[i] := y[i] - x[k] x U[i, k];
8. endfor;
9. end BACK SUBSTITUTION
Dense Linear Algebra (www.netlib.gov)

- Basic Linear Algebra Subroutines (BLAS)
 - Level 1 (vector-vector): vectorization
 - Level 2 (matrix-vector): vectorization, parallelization
 - Level 3 (matrix-matrix): parallelization

- LINPACK (Fortran)
 - Linear equations and linear least-squares

- EISPACK (Fortran)
 - Eigenvalues and eigenvectors for matrix classes

- LAPACK (Fortran, C) (LINPACK + EISPACK)
 - Use BLAS internally

- ScaLAPACK (Fortran, C, MPI) (scalable LAPACK)
Sorting Algorithms

- Task of arranging unordered collection into order
- Permutation of a sequence of elements
- Internal versus external sorting
 - External sorting uses auxiliary storage
- Comparison-based
 - Compare pairs of elements and exchange
 - $O(n \log n)$
- Noncomparison-based
 - Use known properties of elements
 - $O(n)$
Sorting on Parallel Computers

- Where are the elements stored?
 - Need to be distributed across processes
 - Sorted order will be with respect to process order

- How are comparisons performed?
 - One element per process
 - compare-exchange
 - interprocess communication will dominate execution time
 - More than one element per process
 - compare-split

- Sorting networks
 - Based on comparison network model
Single vs. Multi Element Comparison

- One element per processor

 - \(a_i \rightarrow a_j \)
 - \(a_i, a_j \rightarrow a_j, a_i \)
 - \(\min\{a_i, a_j\} \rightarrow \max\{a_i, a_j\} \)

- Multiple elements per processor

 - \(P_i \rightarrow P_j \)
 - \(\{1, 6, 8, 13\} \rightarrow \{2, 7, 9, 10, 12\} \)
 - \(\{1, 6, 8, 11, 13\} \rightarrow \{2, 7, 9, 10, 12\} \)
 - \(P_i \rightarrow P_j \)
 - \(\{1, 2, 5, 7, 8, 9, 10, 11, 12, 13\} \rightarrow \{1, 2, 6, 7, 8, 9, 10, 11, 12, 13\} \)
 - \(P_i \rightarrow P_j \)
 - \(\{1, 2, 5, 7, 8\} \rightarrow \{9, 10, 11, 12, 13\} \)
 - \(P_i \rightarrow P_j \)
Sorting Networks

- Networks to sort n elements in less than $O(n \log n)$
- Key component in network is a comparator
 - Increasing or decreasing comparator

![Comparator Diagrams]

- Comparators connected in parallel and permute elements
Multiple comparator stages
- Connected together by interconnection network
- Output of last stage is the sorted list
- \(O(\log^2 n) \) sorting time
- Convert any sorting network to sequential algorithm
Bitonic Sort

- Create a *bitonic sequence* then sort the sequence
- Bitonic sequence
 - sequence of elements \(<a_0, a_1, ..., a_{n-1}>\)
 - \(<a_0, a_1, ..., a_i>\) is monotonically increasing
 - \(<a_i, a_{i+1}, ..., a_{n-1}>\) is monotonically decreasing
- Sorting using bitonic splits is called *bitonic merge*
- *Bitonic merge network* is a network of comparators
 - Implement bitonic merge
- Bitonic sequence is formed from unordered sequence
 - Bitonic sort creates a bitonic sequence
 - Start with sequence of size two (default bitonic)
Bitonic Sort Network

Unordered sequence

<table>
<thead>
<tr>
<th>Wires</th>
<th>0000</th>
<th>0001</th>
<th>0010</th>
<th>0011</th>
<th>0100</th>
<th>0101</th>
<th>0110</th>
<th>0111</th>
<th>1000</th>
<th>1001</th>
<th>1010</th>
<th>1011</th>
<th>1100</th>
<th>1101</th>
<th>1110</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>Wires</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Bitonic sequence

<table>
<thead>
<tr>
<th>Wires</th>
<th>10</th>
<th>5</th>
<th>9</th>
<th>20</th>
<th>14</th>
<th>3</th>
<th>60</th>
<th>40</th>
<th>23</th>
<th>95</th>
<th>35</th>
<th>95</th>
<th>18</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wires</td>
<td>10</td>
<td>5</td>
<td>9</td>
<td>20</td>
<td>14</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>23</td>
<td>95</td>
<td>35</td>
<td>95</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

Lecture 9

CIS 631 - Parallel Processing
Bitonic Merge Network

Bitonic sequence

<table>
<thead>
<tr>
<th>Wires</th>
<th>0000</th>
<th>0001</th>
<th>0010</th>
<th>0011</th>
<th>0100</th>
<th>0101</th>
<th>0110</th>
<th>0111</th>
<th>01000</th>
<th>01010</th>
<th>01110</th>
<th>10000</th>
<th>10010</th>
<th>10100</th>
<th>10110</th>
<th>11000</th>
<th>11010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>35</td>
<td>11000</td>
<td>11011</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>35</td>
<td>11000</td>
<td>11011</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>35</td>
<td>11000</td>
<td>11011</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>35</td>
<td>11000</td>
<td>11011</td>
<td></td>
</tr>
</tbody>
</table>

Sorted sequence

<table>
<thead>
<tr>
<th>0</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>20</th>
<th>95</th>
<th>90</th>
<th>60</th>
<th>40</th>
<th>35</th>
<th>23</th>
<th>35</th>
<th>11000</th>
<th>11011</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>35</td>
<td>11000</td>
<td>11011</td>
</tr>
</tbody>
</table>
Parallel Bitonic Sort on a Hypercube

1. procedure BITONIC SORT(label, d)
2. begin
3. for i := 0 to d - 1 do
4. for j := i downto 0 do
5. if (i + 1)st bit of label = j th bit of label then
6. comp exchange max(j);
7. else
8. comp exchange min(j);
9. end BITONIC SORT
Parallel Bitonic Sort on a Hypercube (Last stage)

Step 1

Step 2

Step 3

Step 4
Bubble Sort and Variants

- Can easily parallelize sorting algorithms of $O(n^2)$
- Bubble sort compares and exchanges adjacent elements
 - $O(n)$ each pass
 - $O(n)$ passes
- Odd-even transposition sort
 - Compares and exchanges odd and even pairs
 - After n phases, elements are sorted
Odd-Even Transposition Sort

Unsorted

3 2 3 8 5 6 4 1 Phase 1 (odd)
2 3 3 8 5 6 1 4 Phase 2 (even)
2 3 3 5 8 1 6 4 Phase 3 (odd)
2 3 3 5 1 8 4 6 Phase 4 (even)
2 3 3 1 5 4 8 6 Phase 5 (odd)
2 3 1 3 4 5 6 8 Phase 6 (even)
2 1 3 3 4 5 6 8 Phase 7 (odd)
1 2 3 3 4 5 6 8 Phase 8 (even)
1 2 3 3 4 5 6 8

Sorted
Parallel Odd-Even Transposition Sort on Ring

1. procedure ODD-EVEN PAR(n)
2. begin
3. id := process’s label
4. for i := 1 to n do
5. begin
6. if i is odd then
7. if id is odd then
8. compare-exchange min(id + 1);
9. else
10. compare-exchange max(id - 1);
11. end if
12. end if
13. if i is even then
14. if id is even then
15. compare-exchange min(id + 1);
16. else
17. compare-exchange max(id - 1);
18. end if
19. end for
20. end ODD-EVEN PAR
Quicksort

- Quicksort has average complexity of $O(n \log n)$
- Divide-and-conquer algorithm
 - Divide into subsequences where every element in first is less than or equal to every element in the second
 - Pivot is used to split the sequence
 - Conquer step recursively applies quicksort algorithm
Sequential Quicksort

1. \textbf{procedure} QUICKSORT \((A, q, r)\)
2. \textbf{begin}
3. \hspace{1em} \textbf{if} \(q < r\) \textbf{then}
4. \hspace{2em} \textbf{begin}
5. \hspace{3em} \(x := A[q] ;\)
6. \hspace{3em} \(s := q ;\)
7. \hspace{3em} \textbf{for} \(i := q + 1\) \textbf{to} \(r\) \textbf{do}
8. \hspace{4em} \textbf{if} \(A[i] \leq x\) \textbf{then}
9. \hspace{5em} \textbf{begin}
10. \hspace{6em} \(s := s + 1 ;\)
11. \hspace{6em} \text{swap}(A[s], A[i]);
12. \hspace{5em} \textbf{end if}
13. \hspace{4em} \text{swap}(A[q], A[s]);
14. \hspace{3em} \text{QUICKSORT} \((A, q, s) ;\)
15. \hspace{3em} \text{QUICKSORT} \((A, s + 1, r) ;\)
16. \hspace{2em} \textbf{end if}
17. \textbf{end} QUICKSORT
Parallel Shared Address Space Quicksort

First Step

<table>
<thead>
<tr>
<th>(P_0)</th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
<th>(P_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>13</td>
<td>18</td>
<td>2</td>
<td>17</td>
</tr>
</tbody>
</table>

pivot=7

after local rearrangement

<table>
<thead>
<tr>
<th>(P_0)</th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
<th>(P_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>18</td>
<td>13</td>
<td>1</td>
</tr>
</tbody>
</table>

after global rearrangement

Second Step

<table>
<thead>
<tr>
<th>(P_0)</th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
<th>(P_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>16</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

pivot=5

pivot=17

after local rearrangement

<table>
<thead>
<tr>
<th>(P_0)</th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
<th>(P_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

after global rearrangement

<table>
<thead>
<tr>
<th>(P_0)</th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
<th>(P_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Efficient Shared Address Space Quicksort

Fourth Step
<table>
<thead>
<tr>
<th>P0</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>after local rearrangement</th>
</tr>
</thead>
</table>

Third Step
<table>
<thead>
<tr>
<th>P0</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>after global rearrangement</th>
</tr>
</thead>
</table>

Pivot Selection
- pivot = 11

<table>
<thead>
<tr>
<th>P0</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>after local rearrangement</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>pivot selection</th>
</tr>
</thead>
</table>

CIS 631 - Parallel Processing

Lecture 9
Bucket Sort and Sample Sort

- Bucket sort is popular when elements are uniformly distributed over an interval
 - Create m buckets and place elements in appropriate bucket
 - $O(n \log(n/m))$
 - If $m=n$, can use value as index to achieve $O(n)$ time

- Sample sort is used when uniformly distributed assumption is not true
 - Distributed to m buckets and sort each with quicksort
 - Draw sample of size s
 - Sort samples and choose $m-1$ elements to be splitters
 - Split into m buckets and proceed with bucket sort
Sample Sort

Initial element distribution

Local sort & sample selection

Sample combining

Global splitter selection

Final element assignment
Graph Algorithms

- Graph theory important in computer science
- Many complex problems are graph problems
- $G = (V, E)$
 - V finite set of points called vertices
 - E finite set of edges
 - $e \in E$ is an pair (u, v), where $u, v \in V$
 - Unordered and ordered graphs
Graph Terminology

- Vertex *adjacency* if \((u,v)\) is an edge
- *Path* from \(u\) to \(v\) if there is an edge sequence starting at \(u\) and ending at \(v\)
- If there exists a path, \(v\) is *reachable* from \(u\)
- A graph is *connected* if all pairs of vertices are connected by a path
- A *weighted* graph associates weights with each edge
- *Adjacency matrix* is an \(n \times n\) array \(A\) such that
 - \(A_{i,j} = 1\) if \((v_i,v_j) \in E\); 0 otherwise
 - Can be modified for weighted graphs (\(\infty\) is no edge)
 - Can represent as *adjacency lists*
Graph Representations

- Adjacency matrix

\[A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
\end{bmatrix} \]

- Adjacency list
Minimum Spanning Tree

- A spanning tree of an undirected graph G is a subgraph of G that is a tree containing all the vertices of G.
- The minimum spanning tree (MST) for a weighted undirected graph is a spanning tree with minimum weight.
- Prim’s algorithm can be used:
 - Greedy algorithm
 - Selects an arbitrary starting vertex
 - Chooses new vertex guaranteed to be in MST
 - $O(n^2)$
 - Prim’s algorithm is iterative
Prim’s Minimum Spanning Tree Algorithm

1. procedure PRIM MST(V, E, w, r)
2. begin
3. \(VT := \{ r \} \);
4. \(d[r] := 0; \)
5. for all \(v \in (V - VT) \) do
6. \(\text{if edge } (r, v) \text{ exists set } d[v] := w(r, v); \)
7. \(\text{else set } d[v] := \infty; \)
8. while \(VT \neq V \) do
9. begin
10. find a vertex \(u \) such that \(d[u] := \min \{ d[v] | v \in (V - VT) \}; \)
11. \(VT := VT \cup \{ u \}; \)
12. for all \(v \in (V - VT) \) do
13. \(d[v] := \min \{ d[v], w(u, v) \}; \)
14. endwhile
15. end PRIM MST
Example: Prim’s MST Algorithm

(a) Original graph

(b) After the first edge has been selected

\[
d[\cdot] = \begin{bmatrix}
1 & 0 & 5 & 1 & \infty & \infty \\
0 & 1 & 3 & \infty & \infty & 3 \\
1 & 0 & 5 & 1 & \infty & \infty \\
3 & 5 & 0 & 2 & 1 & \infty \\
\infty & 1 & 2 & 0 & 4 & \infty \\
\infty & \infty & 1 & 4 & 0 & 5 \\
2 & \infty & \infty & \infty & 5 & 0
\end{bmatrix}
\]
Example: Prim’s MST Algorithm

(c) After the second edge has been selected

(d) Final minimum spanning tree

\[\begin{array}{cccccc}
\text{d}[j] & a & b & c & d & e & f \\
\hline
1 & 1 & 2 & 1 & 4 & 3 \\
\end{array} \]

\[\begin{array}{cccccccc}
a & 0 & 1 & 3 & \infty & \infty & 3 \\
b & 1 & 0 & 5 & 1 & \infty & \infty \\
c & 3 & 5 & 0 & 2 & 1 & \infty \\
d & \infty & 1 & 2 & 0 & 4 & \infty \\
e & \infty & \infty & 1 & 4 & 0 & 5 \\
f & 2 & \infty & \infty & \infty & 5 & 0 \\
\end{array} \]
Parallel Formulation of Prim’s Algorithm

- Difficult to perform different iterations of the `while` loop in parallel because `d[v]` may change each time
- Can parallelize each iteration though
- Partition vertices into `p` subsets `V_i, i=0,...,p-1`
- Each process `P_i` computes
 \[d_i[u] = \min \{ d_i[v] \mid v \in (V - V_T) \cup V_i \} \]
- Global minimum is obtained using all-to-one reduction
- New vertex is added to `V_T` and broadcast to all processes
- New values of `d[v]` are computed for local vertices
- `O(n^2/p) + O(n \log p)` (computation + communication)
Partitioning in Prim’s Algorithm

(a) $d[1..n] \quad \ldots \ldots \quad \ldots \ldots \quad \left| \begin{array}{c} \frac{n}{p} \end{array} \right|

(b) $A \quad \ldots \ldots \quad \ldots \ldots$

Processors 0 1 i $p-1$
Single-Source Shortest Paths

- Find *shortest path* from a vertex v to all other vertices
- The shortest path in a weighted graph is the edge with the minimum weight
- Weights may represent time, cost, loss, or any other quantity that accumulates additively along a path
- Dijkstra’s algorithm finds shortest paths from a vertex s
 - Similar to Prim’s MST algorithm
 - Incrementally finds shortest paths in greedy manner
 - Keep track of minimum cost to reach a vertex from s
 - $O(n^2)$
Dijkstra's Single-Source Shortest Paths Algorithm

1. procedure DIJKSTRA SINGLE SOURCE SP(V, E, w, s)
2. begin
3. \(V_T := \{s\}; \)
4. for all \(v \notin (V - V_T) \) do
5. \hspace{1em} if \((s, v)\) exists set \([v] := w(s, v);\)
6. \hspace{1em} else set \([v] := \infty;\)
7. while \(V_T \neq V \) do
8. \hspace{1em} begin
9. \hspace{2em} find a vertex \(u \) such that \([u] := \min\{[v] \mid v \in (V - V_T)\};\)
10. \hspace{2em} \(V_T := V_T \cup \{u\}; \)
11. \hspace{2em} for all \(v \notin (V - V_T) \) do
12. \hspace{3em} \([v] := \min\{[v], [u] + w(u, v)\};\)
13. \hspace{2em} endwhile
14. end DIJKSTRA SINGLE SOURCE SP
Parallel Formulation of Dijkstra’s Algorithm

- Very similar to Prim’s MST parallel formulation
- Use 1D block mapping as before
- All processes perform computation and communication similar to that performed in Prim’s algorithm
- Parallel performance is the same
 - $O(n^2/p) + O(n \log p)$
 - Scalability
 - $O(n^2)$ is the sequential time
 - $O(n^2) / [O(n^2/p) + O(n \log p)]$
All Pairs Shortest Path

- Find the shortest path between all pairs of vertices
- Outcome is a $n \times n$ matrix $D=\{d_{i,j}\}$ such that $d_{i,j}$ is the cost of the shortest path from vertex v_i to vertex v_j

Dijsktra’s algorithm
- Execute single-source algorithm on each process
- $O(n^3)$
- Source-partitioned formulation (use sequential algorithm)
- Source-parallel formulation (use parallel algorithm)

Floyd’s algorithm
- Builds up distance matrix from the bottom up
Floyd’s All-Pairs Shortest Paths Algorithm

1. procedure FLOYD ALL PAIRS SP(A)
2. begin
3. \(D^{(0)} = A; \)
4. for \(k := 1 \) to \(n \) do
5. for \(i := 1 \) to \(n \) do
6. for \(j := 1 \) to \(n \) do
7. \(d^{(k)}_{i,j} := \min d^{(k-1)}_{i,j}, d^{(k-1)}_{i,k} + d^{(k-1)}_{k,j}; \)
8. end FLOYD ALL PAIRS SP
Parallel Floyd’s Algorithm

1. procedure FLOYD ALL PAIRS PARALLEL (A)
2. begin
3. \(D^{(0)} = A; \)
4. for \(k := 1 \) to \(n \) do
5. forall \(P_{i,j} \), where \(i, j \leq n \), do in parallel
6. \(d^{(k)}_{i,j} := \min d^{(k-1)}_{i,j}, d^{(k-1)}_{i,k} + d^{(k-1)}_{k,j}; \)
7. end FLOYD ALL PAIRS PARALLEL
Next Class

- Algorithms for simulation
- Analytical modeling of parallel programs