Email Security

Outline

- Email basics
- What security services are needed for email?
- How?
Email Basics

- Distribution Lists
- Mail infrastructure

Distribution Lists

- Remote Exploder
- Local Exploder
Remote Exploder

sender \rightarrow Distribution list maintainer \rightarrow recipient 1

Local Exploder

Distribution list maintainer \rightarrow sender \leftarrow recipient 1

Copyright © 2003 Jun Li.
All rights reserved.
Advantages w/ Remote Exploder

• The mailing list can stay anonymous to the sender
• Maybe good for bandwidth (imagine all members of a mailing list is in Mars)
• Save bandwidth if the mailing list is very long
• Can be in parallel when multiple mailing lists

Advantages w/ Local Exploder

• Easier to prevent mail forwarding loops
• Duplicate copy prevention
• Can estimate bandwidth cost before sending out emails
Email Infrastructure

- MTA: Mail Transfer Agents
- UA: User Agents
- Mail is forwarded from UA to MTA to … to MTA to UA

What Security Services are Needed?

- Privacy
- Authentication
- Integrity
- Non-repudiation
- Proof of submission
- Proof of delivery
- Message flow confidentiality
- Anonymity
- Containment
- Audit
- Accounting
- Self destruct
- Message sequence integrity
Establishing Keys

• Establishing public keys
 – Out of band mechanism
 – PKI
 – Piggybacking certificates on emails
• Establishing secret keys
 – Alice phones Bob . . . (we knows this is bad)
 – Kerberos

Privacy

• Why?
 – Eavesdropper
 – Relay nodes (routers or MTAs)
• End-to-end privacy
• Privacy with distribution list exploders
End-to-end Privacy

• Alice sends Bob an email that is encrypted with Bob’s public key
• Well, not ideal, because
 – Multiple recipients
 – Public key crypto is far less efficient than secret key crypto
 – Better not to use long term key unless really the only way to do so

A Public Key Based E2E Privacy Solution

• Alice picks up a secret key and then sends out the following:

 Bob’s name; $K_{Bob}\{S\}$
 Carol’s name; $K_{carol}\{S\}$
 Ted’s name; $K_{Ted}\{S\}$
 $S\{m\}$
Authentication of the Source

- Source authentication based on public key technology
 - Sign the message using the sender’s private key
- Source authentication based on secret keys
 - A message must carry a MAC (*message authentication code*)
 - MAC can be:
 * CBC residue of the message computed with the shared secret key
 * Message digest of the shared secret append to the message
 * Encrypted message digest (preferred when multiple recipients)
- Source authentication with distribution lists

Message Integrity

- Source authentication often must come with the message integrity
 - Otherwise, why care the source authentication?
- But how about message integrity w/o source authentication?
 - Can be done if the message is encrypted with the recipient’s public key
 - Perhaps needed by a kidnapper
Non-Repudiation

- Non-repudiation based on public key technology
 - Relatively easy
 - Require the message to be signed by the sender using its private key
 - Remember nobody else knows the private key, so...
- Non-repudiation with secret keys
 - Relatively difficult
 - The message is signed using a shared secret key
 - But nobody else knows the secret key (what’s the difference here from above?)

Plausible Deniability Based on Public Key Technology

- Alice picks a secret key S
- $\{S\}_\text{Bob}$ (encrypted with Bob’s public key)
- $[\{S\}_\text{Bob}]_\text{Alice}$ (signed with Alice’s private key)
- MAC of $m = f(S, m)$
- Alice sends the following to Bob:
 - $m, MAC, [\{S\}_\text{Bob}]_\text{Alice}$

- Bob can know that m is from Alice, but he can’t prove to anyone else that m is from Alice
 - Bob can know S
Non-Repudiation w/ Secret Keys

Proof of Submission
Proof of Delivery

Message Flow Confidentiality
Anonymity

Containment
Verifying **WHEN** a message was really sent

- Preventing Backdating
- Preventing Postdating

Quiz 4

Assume secret key crypto. If Bob wants to verify that an email is indeed from Alice, he will check a piece of data that comes with the message:

1. What’s that piece of data called?
2. Who calculated this piece of data?
3. List three different ways to calculate this piece of data.
PEM - Privacy Enhanced Mail

Intro to PEM

- Developed in the late 80’s
- For ordinary messages
- Four main RFCs:
 - RFC 1421: message formats
 - RFC 1422: CA hierarchy
 - RFC 1423: crypto algorithms
 - RFC 1424: certificate exchange format
Main Goals of PEM

- Privacy
- Integrity
- Source authentication

- PEM uses the similar methods we talked earlier

PEM Model

- Smart PEM software sitting at the source and the destination
- User keys are used to sign or encrypt
 - One key per message
- User keys are based on either secret key or public key technology
PEM Message Structure

• A PEM message can contain several parts
• And each part treated differently
 – Clear text
 – Integrity protected
 – Or encrypted
• With markers around each block

Types of Message Pieces

• Ordinary, unsecured data
• MIC-CLEAR
 – Clear text + MIC
• MIC-ONLY
 – Encoded text + MIC
• ENCRYPTED
 – Encoded (Encrypted (clear text) + encrypted(MIC))

• Note: MIC here is the PEM’s term for MAC
Establishing Keys

- One key per message
 - Randomly chosen by the sender
- The per-message key is established through **interchange key**
 - Which can be either a secret key
 - PEM does not specify how to establish this
 - A public key
 - PEM defines certification hierarchy

The key is 2582

Encrypted w/ interchange key

data . . .

Encrypted with message key (2582)
PEM Certificate Hierarchy

• A hierarchy of CAs in a tree form
 – The root is called IPRA (Internet Policy Registration Authority)
 – CAs certified by IPRA are called PCA (Policy Certificate Authority)
 – Then other CAs
• Policy: each CA has a policy on issuing certificates
 – Three different policies

CA Types

• High Assurance (HA) CA
 – Super secure
 – Very strict on deciding to issue a certificate to somebody
• Discretionary Assurance (DA) CA
 – Well managed, but no guarantee
• No Assurance (NA) CA
 – No constraints as long as no duplications
Certificate Revocation Lists (CRLs)

- A certificate may expire
 - Or broken
- Must be revoked
- CRL service
- Message types
 - CRL-RETRIEVAL-REQUEST
 - CRL
S/MIME

MIME

- MIME - Multipurpose Internet Mail Extensions (RFC 2045)
 - It specifies how to encode non-text data and type labels
 - Pictures, rich text, video, binary files . . .
 - So it will look like a text message to MTAs
- But remember PEM is only intended to handle ordinary text
- S/MIME
 - RFC 2633
 - Took design principles from PEM for security
S/MIME Certificate Hierarchy

• S/MIME does not try to define a particular PKI
 – Easy to deploy
 – With less security (compared to PEM’s)
• But instead assumes a number of parallel independent hierarchies
 – Each user simply trusts a subset of them

(cont’d)

• S/MIME w/ a public certifier
 – Verisign, Thawte
• S/MIME w/ an organization certifier
 – Your employer helps
• S/MIME w/ certificates from any old CA
PGP Overview

• PGP is not just for mail
 – It can be used for file encryption
 – Then mail the encrypted files to recipients
 – PGP source code can be integrated with common mail systems

• There are many versions of PGP
 – We focus on PGP Classic
 – The ideas are the same among different versions
Key Distribution

- PGP uses public key crypto for personal keys
- Certificates are optional in PGP
- People can publish their PGP fingerprints
 - Cryptographic hashes of public keys
 - E.g. 29 6F 4B E2 56 FF 36 2F AB 49 DF DF B9 4C BE E1
 - Then send emails containing the public key (and fingerprints)

When PGP Uses Certificates

- Differences from PEM and S/MIME
 - PGP assumes anarchy
 - Anyone can issue a certificate for anyone!
 - Remember PEM assumes a strict hierarchy and S/MIME assumes several hierarchies
 - PGP is different in verifying certificates
 - Need to search for a chain of trust
Chain of Trust

• Carol’s public key is P1, signed by Alice
• Alice’s public key is P2, signed by Bob
• Carol’s public key is P1, signed by Jason

Issues of Chain of Trust

• With a disorganized mass of certificates, how to find a chain of certificates that can lead to Alice’s public key?
• What if there are multiple chains, but lead to different keys for the same person?
• If a chain is found, do you trust it?
Private Key

- Needed when
 - Signing your own message
 - Decrypting a message delivered to you that is encrypted using your public key
- PGP can generate a private key for you
 - Then store it in an encrypted form

Midterm

- 7-10 problems
 - 2-3 essay questions
- 80 minutes
 - 2 - 3:20 p.m. Nov 18th
- First couple weeks are covered in course reserve materials
- Use the lecture slides as the guidance
 - Textbook and course reserves as reference
- The level of materials details to remember
 - To the level that slides have
 - But not to the level of textbooks
- Know steps of Kerberos, SSL, . . .