Homework 1

Due: Friday, January 19

Review the course policy on homeworks.
To facilitate the grading, turn in the three problems on separate sheets of paper.

1. The input to the following algorithm is a real number A and a positive integer b.

 Power(A, b)
 \[C \leftarrow A \]
 \[d \leftarrow b \]
 \[P \leftarrow 1 \]
 \[\textbf{while } d > 0 \]
 \[\textbf{do } \textbf{if } d \text{ is odd } \textbf{then } P \leftarrow P \times C \]
 \[C \leftarrow C \times C \]
 \[d \leftarrow \lfloor d/2 \rfloor \]
 \[\textbf{return } P. \]

 (a) Show that Power(A, b) correctly computes A^b.
 (b) In dealing with real numbers, it is reasonable to assume that a real number takes constant space to represent, and multiplication of two real numbers takes constant time. Assume that A is a real number and that b is an n-digit integer. Compare the running time of Power with the “standard” method of computing powers, namely, successively computing, $A^2 = A \times A$, $A^3 = A^2 \times A$, $A^4 = A^3 \times A$, etc.
 (c) Do the same comparison under the assumption that A and b are both n-digit integers and multiplication of an r-digit integer and an s-digit integer costs $O(rs)$.

2. “Hidden line” problems of the following sort arise in graphics applications.
 Given the locations of buildings in a city, devise an algorithm that identifies just the “skyline” of the city.

 The input could be a sequence of triples, where (l, h, r) indicates a building of height h extending from coordinate l to coordinate r. The representation of the output is left to you to suggest.

 Target timing: $O(n \log n)$, where n is the number of buildings.

3. Problem 10.1-1